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I. INTRODUCTION 

The linear aperture is a region around the axis of the magnets in a collider ring 

where the particle motion is sufficiently linear. Such a region is necessary to allow for 

stable and efficient beam operations. The linear aperture is also regarded as the prime 

requirement in choosing the inner diameter of the magnet coil package. A smaller coil 

size implies a lower magnet cost. 

For truly linear motion, the particle trajectory in the phase space at a certain 

location along the ring maps out a perfect ellipse which is an invariant. In the pres- 

ence of nonlinearities, however, the trajectory fluctuates about the ellipse from turn to 

turn. The rms fractional value of this fluctuation is called the single particle smear. 

Based on past accelerator experience, 11Jl the linear aperture of the SSC is defined 

quantitativelyI as the region within which the smear is less than 6.4% and the on- 

momentum tune shift with amplitude is less than 0.005. 

In experiment E778 performed at the Fermilab Tevatron, the multiparticle smear 

was measured[4] f or various sextupole excitation currents. The results appeared to agree 

excellently with multiparticle simulations. Single-particle tracking was then performed 

with exactly the same machine inputs as the multiparticle simulations to convert the 

observed smear of the beam to that of a single particle. It would be very useful that 

the single particle smear can be computed directly from the lattice. This is because 

such computation can tell us immediately whether the multipole errors in a particular 

sample dipole and the particular distributions of correction multipoles arc acceptable 

or not without resorting to extensive tracking. Such possible screening procedure for 

random multipole field errors has been attempted by Peggs, Furman, and Chao.1’1 

In this paper, analytical formula: are presented for the computation of smear due 

to both field errors and correction multipole insertions. Specifically the one- and two- 

degree-of-freedom expressions for the smear due to sextupoles and octupoles are given 

first. In this particular case we show that the smear has a very simple expression in 

terms of the norms of Collins’ distortion functions. 1’1 It will be shown later that this is 

not the case upon the addition of higher multipole terms. The reason is that there is 

in general more than one multipole contributing to the same harmonic component and 
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hence their contribution is not separable. Next, a generalized formula for the horizontal 

smear due to all multipoles is derived. Since horizontal and vertical coupling is usually 

minimized during actual machine operations, the formula for horizontal smear should 

be adequate for all practical purposes. In these derivations the periodic structure of 

the multipoles in the ring is taken into account. Analytic expressions for the smear 

have also been derived by Forest L71 but in the complicated hard-to-follow Lie algebra 

language. Our analytic expressions are simple. 

Finally, a number of applications demonstrate the usefulness of these calculations. 

In particular, the smear as calculated in this formalism, is compared with the smear ex- 

tracted from experimental observations during E778, for a variety of conditions. Results 

from tracking calculations are also presented and comparisons are made. Moreover, the 

smear introduced in the Tevatron due to random and systematic multipole errors in 

the dipole magnets is calculated. The same calculation is repeated for the SSC ring. 

Furthermore, the calculation of the smear in the SSC is done after the insertion of 

correction elements for random multipole errors. The lumped correction scheme chosen 

for this calculation is due to Neuffer. [81 Various cases are examined and comparisons 

with tracking results from Sun and Talman, 1’1 and other analytical calculations due to 

Forest and Peterson[l’l are presented. 

II. SMEAR DUE TO NORMAL SEXTUPOLES 

One-Degree-of-Freedom Calculation 

Consider the situation of having only sextupoles in the ring. For first order pertur- 

bation, the distortion of the horizontal particle amplitude P, at phase advance I& is 

given byIll 

6&(h) = d:{[A1(&)sinrp, - &(&)cosip,l 

+ [Ad&) sin 31~~ - &(h) ~0s 310~1) , (2.1) 

where ~0, is the instantaneous betatron phase such that 

I = dzcosp, (2.2) 
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and 

2’ = -sl, sin ppz, 

and the phase advance G5 is defined by 

44s) = J,’ &. 

(2.3) 

(2.4) 

Here Br, Al, Bar and A3 are the Collins’ distortion functions defined by 

(2.5) 

The summations over k above, are over each sextupole located at the ‘modified’ phase 

advance Q,&, which is related to the usual Floquet phase g,k by 

4 
rk 

if &k 2 & , 
*,:, = 

*)B!? t 2?rv, if $.k < 6 , 
(2.6) 

depending on whether it is upstream or downstream of the observation point &. 

The horizontal amplitude A, has been normalized so t,hat it is a constant of motion 

(or the Courant-Snyder ellipse is a circle) for the perfectly linear machine. It is related 

to the horizontal emittance t, by 

TdZ. 
5 

t =K’ 
(2.7) 

where PO is a reference length specially introduced so that the amplitude A retains the 

dimension of length. The normalized vertical amplitude R, has been set to zero. 
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The single particle smear at & is defined as 

(2.8) 

(2.9) 
where ( ) denotes the average over many turns, or, equivalently over the instantaneous 

betatron phase (P=. From Eq. (2.1), we get immediately 

si(+z) = ; d: { Ai(+=) + %($k) + A:(&) + B:&)} 

If me consider the distortion functions as vectors 

the smear is just related to the norms of these vectors by 

s;(h) = ; A: { lRy)12 + IR~)/*}$= 

(2.10) 

(2.12) 

It is a well-known property of the distortion functions that the distortion functions at 

another point $+A$ downstream are given by the vectors Ry) and Rc) rotated through 

angles hli, and 3A$ respectively if there is no sextupole between the two points: 

(:),.,+ = (-:;::z: ::::“,::) (::), ’ (2.13) 

where p stands for 1 or 3. In passing through a thin sextupole of length L + 0 and 

strength 

(2.14) 

with horizontal betatron function pz and particle’s magnetic rigidity (Bp), the En’s are 

continuous while the A,‘s jump by an amount St21/4. Thus the smear will be a constant 

between two sextupoles but will have a jump when a sextupole is crossed. This is 

demonstrated in Fig. (1) which is obtained by plotting the smear as given by Eq. (2.12) 
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Figure 1: Smear versus phase advance, around the machine, as predicted from pertur. 

bation calculation. 



as a function of the phase advance around the Tevatron during the performance of 

E778. Sixteen sextupoles clustered in two groups of eight located at phase advances of 

approximately 4.5 x 27 and 14.5 x 2x cause these jumps in the smear. In the special 

situation of having only one sextupole in the ring, the smear becomes a constant of 

motion. 

Further insight can be obtained from the expression (2.12) for the smear in terms of 

phases and sextupole strengths. The definition of the distortion functions (2.5) implies 

or 

Similarly, 

that 

B:(+=) + A:(k) = 64si;z =~ c S!“)$) cos($:, - &,,) , 
= k,k’ 

(2.15) 

W(4 z )I = 81 sinl~u.1 1~s!2)c’*‘k 1 

(2.17) 

Therefore, if we want the horizontal smear to vanish at a particular point 4, what we 

need is to arrange the sextupoles so that 

$-.$)e’“; = 0 and ~S!‘)e+k = 0 (2.18) 

If the sextupoles are random errors in dipoles say, then we have 

R$@ t Rr)’ = ; .& 
2 

+ sin2;Tv *) p? i 

where (SF)‘) is the variance of the sextupole error at location k. Note that for purely 

random errors, the smear is identically the same at every point around the ring. Thus, 

these errors cannot be corrected in any way. However, in a machine like the Tevatron, 

every dipole has been measured. In other words, all the “random errors” at the dipoles 

are actually known. As a result, they can be corrected using correctors. In Chapter 

V we present examples of how one can calculate the smear due to random sextupole 

errors in realistic cases. 



Two-Degree-of-Freedom Calculation 

In two degrees of freedom the distortion of the horizontal amplitude R, at phase 

advance &, to first order in the sextupole strength, is given by[“] 

6A, = dz[(A, sin (p2 - B1 cos vp.) + (As sin 39, - Bs cos 39.)] 

-dz(2(Asinvp, - Bcos p2) + (A.sinp+ - B, cos q+) 

- (Adsin+ - Bdcosrp-)] (2.20) 

The distortion of the vertical amplitude 4 is given by 

6% = -2d&[(A, sin p+ - B. cos rp+) f (Ad sin ‘p- - Bd cos p-)] (2.21) 

The distortion functions A,, B,, AZ, 83 are given by Eq. (2.5) while B., A., I&, Ad, 

B, i? are given by 

&(ljt+) = 2si;hv ~ $+ - Tv+) > 

A($+)= .l C 
.$’ 
--in($>,-ti+-rv+), 2smirv+ k 4 

.I$) 
Bd($- 1 = 2 si;,,- c - 

k 
4 cos ($‘, - q!- - 7x) , 

$1 
Ad(h) = 2siJnv_ c 4 sin (dtk ~ $- - TV-) , 

k 

B(h) = 2 si;nv 

$’ 

c 4 cm (a? - dJz - 4 1 
= k 

41CII) = 2si,l,, 

$1 

I- 4 sin (dk - $3 - w) , 
5 k 

(2.22) 

where $i = 2$, & 4, and vi = 2v, l u,. Again here r+!& and #,, are the modified 

phase advances defined in Eq. (2.6). Th e sextupole strength L?(*) is defined by 

(2.23) 



In two degrees of freedom one can define three different kinds of smear: 

(2.24) 

and 

Sxu = ((we”)“* ) 

where ( ) denotes again the average over the instantaneous betatron phases p2 and lpy. 

Using Eqs. (2.20) and (2.21) one can express the three smears in terms of the Collins’ 

distortion functions as follows 

S;, = ; ..43A; + B: + A; + Bj) 

+ ; $[A: + B,2 + AZ, + Bj + 4(2 + i?)] - 2d;(A,A + L&B) , (2.27) 

S&J = 2d;;A; + B,Z $ A; + B,j) (2.28) 

S&J = d;(A: + B,Z - A; - Bj) . (2.29) 

If we consider the distortion functions as vectors, similarly to the one-degree-of-freedom 

case, 

&(4+)= Rd($-)= (2.30) 

the three smears are expressed in terms of the norms of these vectors as follows 

Six = ; A: { lR?+ lRa12}+e t ; $ {IR,~‘+~Rd~‘t41fila}~~-2~(R~,R), (2.31) 

and 

s$, = 2d: { lR,12 + iRdl’}+= > (2.32) 

S;, = d; { IRS!* - lR#}+= 

In the above (RI, R) denotes the inner product of the vectors RI and R. 

(2.33) 

8 



From Eq. (2.22) we have 

A; + B,2 = (2.34) 

OC 

lRa’ = 81 sinl?rv+l k 
/pW:.l . 

Similarly 

/C $%iKkl ) 

k 

,R, = 8, ,;,‘,,, 1pW.~ I 

and 

(RI,@ = ’ ~@‘.~)S~?.~)COS(& - $Lkr). 
64 sin’ xv= k,k, 

Hence (2.27), (2.28) and (2.29) become 

and 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

s+;$ 
1 

1 c,, Sf)& y + 1 c,. spew 12 

sin* 7rvs sin’ 3r;u, I 
1 4 

+ 5 64d; -i 

lCkpe+;kIZ + ICkpey + 4~y-p&qZ 

sin’ 7rv, sin’ xv- sin’ 7rv, 

AZ, 1 c s!“‘s,y cos ($& - &‘) , 
32 sin’ TV, k,ks 

(2.39) 

.a: 
SFT = 32 

1 Ck @@kh 12 

sin’ 7rv+ 
(2.40) 

Jq 1 -&p&q s;, = s4 
1 

, -yk p,hc* 12 - 
sin’ XV+ 1 sin’xu- . 

(2.41) 



III. SMEAR DUE TO NORMAL OCTUPOLES 

One-Degree-of-Freedom Calculation 

The distortion of the horizontal amplitude & due to normal octupoles, is given, to 

first order in the octupole strength, by 

S& = d;? [( A, sin 4~~ - B, cos 440~) + 2( A2 sin 2+9, - Bz cos 21p,)] , (3.1) 

where (F= is the instantaneous betatron phase given through Eqs. (2.2) and (2.3) and 

A,, BI, AZ, Bz are the Collins’ distortion functions defined by 

B1(42) = 2 sin:Tv 
s(3) 

c * cos 4(9$, - $b - 7%) , 
= L 

Al(A) = 2sin;nv 
g”’ 

C - 
= k 

8 Sin4(& - A - nvz) , 

BZ(&) = 2sin;Tu 1% cos 2(2c1L - lity - xvz) , = k 
AZ(A) = 2sin;;rv sy I- 

= k 
8 sin2($:, - +, - TV=) 

The octupole strength SC31 is defined by 

‘$3) = 1’ - E[(g)i& 

Also $k denotes the modified phase advance as before. 

Hence the horizontal smear given by Eq. (2.9) is 

S:, = ; d: {(A; + B:) + 4(A; t B;)} , 

or 

where 

‘i = ;A: { jRj3)/2 + 41Rp)/Z} , 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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and 

lR(23’1 = 16, si:2?ru.l ipW*:*~ 

If the horizontal smear is due to both sextupoles and octupoles then it is given by 

the sum of Eqs (2.12) and (3.5), or 

s; = ; -4: { lR(,2)1’ t IRr)(‘} + ; dz { ,Ry)la + 41R(Z3)12}, (3.8) 

This expression can be generalized to include the effects of all higher multipoles. This 

is the subject of the next section. Before that though, we shall derive expressions for 

the two-degree-of-freedom smears due to octupoles. 

Two-Degree-of-J?reedom Calculation 

In two degrees of freedom the distortions of the horizontal and vertical amplitudes, 

& and d,, respectively, are given by 

6A, = dz[(A1sin4ip, - B, cos 497,) $2(Az sin 2+9, - Bz cos 2~,)] 

-3Adt[2(AS sin 2rp, - BS cos 2~~) + (AZ sin 29+ - B3 cos 250+) 

+(A4 sin2ip- - Bq cos2ip-)], (3.9) 
SR, = -3d$k,,[2(AG sin 2~~ - Bg cos 2rp,) + (AS sin 2$~+ - & cos 2Q+) 

-(Ad sin 2~~ - Bq cos 2+)] 

+&,[2(A8 sin 2rp, - & cos 2Q,) t (AT sin 4rp, ~ B, cos 4Q,)] (3.10) 

The distortion functions A,, &, Al, Bz are given by Eqs. (3.2) while As, &, Al, B4, 

As, Es, As, Be, AT, B7, and As, Es are given by 

fL($+) = COS2(1c>k - 4+ - rut) 9 

&(4+) = ’ 
SF’ 

C s sin 2(+& - $J+ ~ TV+) , 2sm2rrv+ k 

SW 
h(k) = 2sin;T1/_ 1 +cos2(L - TL - mm) , 

k 
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A4(2CI-) = 2 sinlZliv- C 
Sp 
- sin 2($,‘, - +- - ~TL) , 

A. 8 

Bdd4 = 2sin;x” 
Sf ’ 

c - cos 2(4-L - ?L - 4 1 
2 k 

8 

AdlC1=) = 2 sininv 
SF’ 

c 8 sin 2(& - A - xv=) , 
= k 

w&J = 2sin;Tu 
Sf ’ 

c - 8 cm 2(7&k - A - rug) , 
Y k 

Ad&) = 2siniTv 
Sf) 

C s sin2(& - +, - T,) , 
Y k 

ads,) = 2 sin;?;v 
$4 

c 7 cm 4(9&k - 4% - qJ 1 
I/ k 

AT(&) = 2 &,, 
$3 

c - II k 8 sin4(& - 11, ~ w) , 

w&J = 2sin;T” c 
$3 

Y k 8 cos 2(&k - lil, - ql) i 
$’ 

AS(&)= ’ ~~sin2(&-&-~vy). 
2sm27rv, k 

(3.11) 

Here v* = uz zk vy and $+ = $. zk $,,. The octupole strengths S@) and .!?@I are defined 

by 

s~~‘+i#$$)g$], (3.12) 

and 

s;(‘yi#$&. (3.13) 

Again $I’ denotes the modified phase advance. Then the three different smears given 

by (2.24), (2.25) and (2.26) are 

s;, = ;d:[(A:tB:) + 4(A;+B;)] + ;d;[4(A;+B,2) t (A;tB;) + (A;+Bf)] 

- 12dfd;[AzAstBzBs] , (3.14) 
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S:, = ;d:[4(A:+B;) i (A;tB,2) t (A;tBj)] t ;d;[4(A;tB,2) + (A;+B;)] 

- 12d~d;[&AstB&] , (3.15) 

and 

S;, = ;d;d;[(A;+B;) - (A;+B,Z)]. (3.16) 

We define, as before, the vectors RF), Rp), Rp), Rp), Rp) and Rf) such that 

Then Six, S& and S’& become 

s;, = ; A: { lR(,3)12 t 4lR(23)/‘} + id: {4lR(,3)1* + /Ry)l* + lRy)lZ} 

- 12d:d;(Rp), Rp)) , (3.18) 

Si,y = id: {41Rf’/’ t IRp)l’ t IRf)l’} + :,4: {4iRf)12 + iRp)I’} 

- 12d:d;(Rr), Rr)) (3.19) 

and 

S;-, = ;d:d; { IRf)12 - lR~)i”} . (3.20) 

Using the definition of the distortion functions we arrive at 

lR;)/ = (3.21) 

IRp)l = (3.22) 

JR?‘1 = (3.23) 

lRf)l = (3.24) 

13 



Hence the three smears are given by 

1 )Yk &)&* 12 
t 

41 c,, &‘% 12 

sin’ 4Kv= sin’ 27rv, 

41 Ck Sye’q~ + / Ck sfwq + / &, Sk P)ei24’i/* 

sin’ 2w, sin’ 2w+ sin* 2kv- 

and 

-12dx 1 c spsp cos 2(&, - ?&,#) 
256 sin’ 2xv, k,k, 

so, = 9 A;& I& sf)&~. I2 1 Ck sf)eizl/i’l. I2 - 
2 256 sin* 2iw+ sin’ 2rv- 

IV. HORIZONTAL SMEAR DUE TO ALL MULTIPOLES 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

In this section, we want to derive a formula for the horizontal smear with the contri- 

butions from all higher multipoles without resorting to the use of distortion functions. 

The irrotational magnetic flux density inside the beam pipe can be written in general 

as 

By t iB, = Bo '&b, t &)(a: t iy)" , (4.1) 
n=1 
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where b,, and a, are the normal and skew multipole coefficients, respectively, of order 

2(n + 1). For example, 
b = 1 an&l n 

n!Bo I%:- (4.2) 

In above, the vertical bending magnetic flux density B. as well as the field gradients 

of the focusing F and D quads have been excluded. Thus, Eq. (4.1) contains the 

contributions of all field errors as well as other inserted correction multipoles only. Since 

we are concerned with the isolated horizontal phase space only, Eq. (4.1) simplifies to 

B, = Bo 5 b,d’ 
n=l 

(4.3) 

In terms of action-angle variables I and a, the motion of a beam particle is described 

by the Hamiltonian[12~13] 

H=vI+AH, (4.4) 

where 

AH=n$l$+ 
qL +=+I 

n+l’ 

The derivation is given in the Appendix. The subscript L will be suppressed below for 

convenience. In the Hamiltonian, the independent variable is 0 = s/R, where s is the 

distance measured along the ideal designed closed orbit and R is the average radius of 

that orbit. The normalized horizontal displacement is given by 

2: = dcos[Q(B) + a] , (4.6) 

where the normalized amplitude is 

A = (21&J1” , (4.7) 

and the function 

is periodic in 8. 

Q(e) = N4 - A (4.8) 

With the help of the trigonometric identities 

CosZm+l+ = L+ m 2mlt1 
4 1 cos(2m-2etl)d, 
k0 

15 



COPip = & m 2m cos2(m-44 

I( 1 f=O 
e 

6,+1 ’ (4.9) 

for m = 1, 2, 3, . , Eq. (4.5), the higher multipole dependent part and field error 

part of the Hamiltonian, can be rewritten as 

(;)m& (2;) cosz(+:)!Q+a) 

Ah+’ 

2y2mt 1) 
cos(2m-2e+l)(Q+a). (4.10) 

The change of I with respect to 6’ is 

dI 

z= 
-y = zlz ‘$iym’ ( $md~~~~~e) sin2(m-e)(Q+a) 

m+fd2”+1(2m-2~~1) 

2292m+1) 
sin(2m-2etl)(Q+a) . (4.11) 

Because we are interested in the first-order deviation from the linear amplitude 

6d, or the first-order deviation from the linear action &I, on the right-hand side of 

Eq. (4.10), I can be considered o-independent and a can be obtained from the equation 

da i3H 

zf=al”“’ 
(4.12) 

0* 

a(e) = !A t $9 , (4.13) 

where ‘p is an initial phase. Then, the integration of Eq. (4.10) can be performed easily. 

Noting that Q(8) is periodic in 9, we obtain 
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P 
x PO (-1 

m+~dZm+1(2m-2e+1) 2mfl 

22m+'(2mt 1) ( 1 e 
cos(2m-2etl)(Q+a-?rv). (4.14) 

Taking the thin lens approximation and defining the multipole of lengths L + 0 and 

strengths as 

Sf”-‘) = Ei [ ‘$‘T (L)oL] k for the 4m-th multipole 

for the (4mt2)-th multipole , (4.15) 

Eq. (4.13) can be rewritten as 

(4.16) 

where the summation over k is for all the multipoles around the ring and we have used 

$$, the modified phase location of the multipole as defined in Eq. (2.6). 

We notice from Eq. (4.16) that multipoles of different orders can have the same 

cosine dependence and they will be mixed. Thus, it will be better to sum up p = m-e 

instead. Then, Eq. (4.15) becomes 

6d 
A 

_ _ g-c .g “@“-24?“-‘)fP’) cos2p($;~16+T”+p) 

p=l k m=p sin 2pirv 

(4.17) 

with fizm-l) and fczm) defined as P 

for the 4m-th multipoles 

fW = 2pSl 
P 22”+‘(2m+l) 

for the (4mt2)-th multipoles (4.18) 
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The ’ in the summation implies that m = 0 is excluded. Finally, an average over the 

initial phase ‘p is performed to obtain the smear S defined in Eq. (2.9). We get 

s2 = ; 2 c 2 d*m-2~;;~~m-‘~ e izp+; 2 

p=l k m=p 

2 

(4.19) 

If the higher multipoles discussed here are all random in nature, the square of the 

smear can be simplified to 

,+2fj2”-1) ’ 

sin 2pw 1 
(4.20) 

where (S, (2m-1) “) and (So”‘“) are the variances of the 4m-th and (4772 + 2).th random 

multipole errors respectively. 
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V. APPLICATIONS 

1. Beam Dynamics Experiment E778 

Experiment E778 performed in the Fermilab Tevatron, studied the nonlinear dynam- 

ics of transverse particle oscillations. U41 Nonlinearities were introduced in the Tevatron 

by sixteen special sextupoles. A low emittance proton beam was injected into the Teva- 

tron. The sextupoles were then ramped up to their final setting. The injection kicker 

was used to induce a coherent bet&on oscillation. The centroid beam position was 

recorded in each of two adjacent beam position monitors. From this information the 

phase space motion could be tracked[“] and the smear could be extracted. 

The smear was one of the parameters used to characterize deviation from linear 

behavior. Measurements were repeated over a wide range of conditions. Specifically, 

measurements were made at various values of the sextupole excitation, the horizontal 

tune, the kicker strength and the beam emittance. The sextupole excitation varied from 

0 to 50 amperes in steps of 5 amperes. The horizontal tune assumed 5 different values 

from 19.38 to 19.42 in steps of Ill while the vertical tune was set to 19.46. The kicker 

strength was 5, 8 and 10 kilovolts corresponding to 2.25, 3.8 and 4.5 mm in amplitude. 

Finally, measurements were taken at two different ranges of the horizontal emittance. 

At the low range the emittance varied from 1.5~ to 3.7x mm-mrad while at the high 

range it was between 7.8~ and 10.9r mm-mrad. 

Single and multiparticle tracking calculations were done to simulate the above ex- 

perimental conditions and the smear was extracted from these calculations. It was then 

compared with the smear extracted from the experimental data. In order to demon- 

strate the agreement between experimental and simulated data for the smear we display 

Fig. (2). Here the smear is plotted against the sextupole excitation, for five tune values 

(19.38 to 19.42). The three curves in each of the five plots correspond to the three dif- 

ferent kicker strengths. The dashed lines represent prediction from tracking calculations 

while the solid lines correspond to the experimental data. 

Next the smear due to the sixteen special sextupoles was calculated using Eq. (2.12) 

and compared with both single particle tracking calculations and experimental data. 

Fig. (3) displays the comparison between the prediction of perturbation theory (solid 
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line) and experimental data for a low emittance beam (crosses). Again the three differ- 

ent lines in each of the five plots correspond to 5, 8 and 10 kV of the kicker strength. 

The agreement between observation and prediction is very good especially in the low 

current - low kicker amplitude regime. The deterioration of the agreement observed at 

higher currents and kick amplitudes is due to the fact that nonlinearities are too strong 

to be handled perturbatively. Finally, Fig. (4) displays the comparison between per- 

turbative calculations and single particle tracking predictions. The previous comments 

can presumably explain any disagreement between these two methods of predicting the 

smear. 

2. Smear Due to Multipole Errors in the Tevatron Dipoles 

2a. Random Errors 

Each one of the 776 Tevatron dipoles is characterized by a set of harmonic coefficients 

(an, b,): the normal and skew multipole coefficients of order 2(n + 1). The mean value 

of each multipole component calculated over the number of dipoles constitutes the so- 

called syst,ematic error while the rms value constitutes the random error of the particular 

multipole. Table I displays the values of both the systematic and random multipole 

errors for the Tevatron dipoles, 1161 up to the 14.pole. These values correspond to a 

magnetic field of 4000 amperes. The unit,s of b, are 10e4 cm-“, and the values are 1O-4 

of the integrated dipole field at 1 cm radius. In the following we shall use Eq. (4.20) 

to calculate the smear due to all higher multipoles of the Tevatron dipoles, assuming 

they are random in nature. Since the highest multipole with a non-zero coefficient is 

the 14.pole (n = 6), Eq. (4.20) becomes 

&“-2f(2”-I) ’ 776 
= 

sin 2prv 1 k=l 1 2 776 
(5.1) 

where the prime in the first sum implies that the m = 1 term is excluded (since b, is 

the normal quadrupole field) Th’l N 1 e in the second sum the prime implies that the m = 0 
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mu1t. co&. multipole System. errors Random errors 

bl normal quadrupole 0.035 0.189 

bz normal sextupo1e 0.1 0.484 

bs normal octupole -0.014 0.047 

ba normal decapole -0.014 0.032 

b5 normal dodecapole - 0.003 

bg normal fourteen-pole 0.020 0.002 J 
Table I: The constants b, are the systematic and random multipole errors in the Teva- 

tron dipoles, expressed in units of 1O-4 cm?‘. 

term is excluded (normal dipole field). Th e variance of the random multipole errors is 

given by 

since we chose PO = 8. 

(St)‘) = ( ( $$L)k bL}’ (5.2) 

For the Tevatron &,=4.4 Tesla, fl,,=lOO m, the dipole length is L = 6.12 m and 

the magnetic rigidity Bp=10/3x900 Tesla-meters. The bl’s are given in Table I. This 

calculation is done for a betatron amplitude of A=5 mm and for a tune of 19.23. Using 

these parameters, the result for the smear in the Tevatron due to random errors in the 

dipole magnets is 

sTcv/ran = 1.04 %. (5.3) 

This result is in agreement with observations done as part of the E778 experiment in 

order to demonstrate the linearity of the Tevatron. 1171 
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2b. Systematic Errors 

In order to calculate the smear due to the systematic errors in the Tevatron dipoles 

we use Eq. (4.19). In the presence of the errors shown in Table I, Eq. (4.19) becomes 

776 5 ,A&-2Sfm-‘)f(2m-1) 
2 

P 

sin 2prv 
e iw; 

(5.4) 

776 
K eiW 2 ’ [d2m-2S~m~‘)f~Zm-‘)] ~’ 
k-l m=p 

$; [dZm-‘S~m)f~2”)] I’, (5.5) 

where again the prime in the first and second sum means that m = 1 and m = 0 

respectively are excluded. 

If we consider a simplified Tevatron lattice which basically consists of a series of 

FODO cells with the 776 dipoles equally spaced from each other around the machine 

then the k-th dipole is at a location with phase advance 

k 
y!l& = 2x x 19.23 x 776 (5.6) 

for a tune of v=19.23. In this case one can easily perform the summations 

(5.7) 

and 

as finite geometric progressions. Indeed 

716 116 
g @4; = 1 .+rk = ei4pn” - l , 

kl 
1 - e-%r (5.9) 
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where 
2KV 

T=776 
(5.10) 

Also notice that the multipole strengths Sk are the same for all k and hence Eq. (5.5) 

is simplified to 

(5.11) 

Using the values specified above, the result for the smear in the Tevatron due to sys- 

tematic errors in the dipole magnets, is 

S TCY,6ylt = o.fK% (5.12) 

3. Smear Due to Multipole Errors in the SSC Dipoles Before and After 

the Insertion of Correction Elements 

The SSC dipoles are expected to have higher order multipole components which are 

given in Table II below. The units of the harmonic coefficients b, are again 10e4 cm-“. 

Though both random and systematic errors are present, the random errors are the 

principal source of the smear. Hence the linear aperture of the SSC is dominated by 

the random multipole components of the dipole magnets. Various correction schemes 

have been devised to compensate for the random errors anticipated in the SSC. It 

appearsi’] that the so-called three lumped correction scheme due to Neuffer [‘I is the 

most effective one. 

In the following we shall calculate the smear in the SSC due to random and/or 

systematic errors in the dipoles using the formalism developed above. Then, we shall 

introduce correction elements according to the three lumped correction scheme and 

recalculate the smear for various situations. The purpose of this exercise is to demon- 

strate that one can predict the smear of a fairly complicated lattice from analytical 

methods without resorting to extensive tracking. 
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r mu1t. co&. multipole System. errors Random errors 

bx normal quadrupole 0.2 0.7 

bz normal sextupole 1.0 2.0 

b3 normal octupole 0.1 0.3 

bq normal decapole 0.2 0.7 

bs normal dodecapole 0.02 0.1 

bs normal fourteen-pole 0.04 0.2 

b7 normal sixteen-pole 0.06 0.2 

be normal eighteen-pole 0.1 0.1 
J 

Table II: The constants b, are the systematic and random multipole errors in the SSC 

dipoles, expressed in units of 10m4 cm-“. 

For this calculation we consider the ‘arcs only’ SSC lattice which consists solely of 

320 identical cells, which in turn contain only the dipoles and the lumped correction 

elements. There are 12 dipoles per cell. The horizontal tune of the lattice was chosen 

to be v, = 81.285. The dipole errors included in this study are the random and/or 

systematic sextupole, octupole and decapole errors. Their skew components are not 

included. 

All the calculations in this section will be done with the use of Eq. (4.19), which, in 

the presence of bz, b3 and b4 only, for the SW lattice becomes 

sz = ; & c 2 1 d2m-2S&)J?1’ e iw; ’ 

&%=I k m=p 

(5.13) 

The basic idea of Neuffer’s scheme is the use of three lumped correctors per half 
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Figure 5: Neuffer’s or ‘three-lumped-correctors’ scheme. B denotes the dipole magnets, 

Q denotes the quad, C, the middle corrector and Cf,d the correctors before and after 

each quad. 

cell, one on each side of the quadrupole, Cf,d, and one in the middle of the half cell, 

C,, as Fig. (5) demonstrates. The integral strengths of the three correctors are given 
by!8,101 

CfLj = $[-83% - 41a2 - llas + 7a4 + 13as + 7&s] , 

C,L, = -$[8al+ 20~~ + 26a3+ 26~~ + 20~~ + 8as], 

cd.& = ~[7u~t13a, + 7a3 - lhl - 41a5 - 83~1~1. 

Here CZ; is the multipole error of the i-th dipole magnet. 

(5.14) 

(5.15) 

(5.16) 

Next, we are going to describe the calculation we performed in detail so one can 

easily reproduce it. Let us suppose we want to compensate for bz, b3 and bd. First, we 

randomly generate three gaussian distributions of errors for each of the three multipoles. 

Each distribution constitutes 3840 errors (one for each SSC dipole magnet). The mean 

and the standard deviation of these distributions are given in Table II. Then we consider 

the earlier described simplified SSC lattice whose basic cell consists of 

CfBBBC,BBBCdC,BBBC,BBBCd. (5.17) 

The virtue of Neuffer’s correction scheme lies in the fact that one may ignore the 

quadrupoles and combine the two correctors Cf and Cd together into one with integral 

strength equal to the sum of the two. Notice that the strengths of the first three 
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correctors on the left of (5.17) are evaluated via the errors of the first six dipoles on the 

left, while the other three correctors are evaluated via the errors of the six dipoles on 

the right. 

All these elements are considered as thin lenses. The correctors are located in the 

middle of the interval between two successive dipoles. Thus there are four contributions 

to the summation over k in Eq. (4.19). Specifically Eq. (5.13) becomes 

640 640 640 
+ c s~~4&2P+')~:, + 1 spe"ww~, + c spe”w)~;, 

k=l k=l kl II 

2 
. (5.18) 

The strength of the Z-th multipole of the k-th dipole B, S& is given by 

&J&9 p (l+‘w s(l) = ~ - Bk (Bp) p. poL ’ ( ) (5.19) 

where a!’ is the error of the k-th dipole magnet. Similarly, the strength of the l-th 

multipole of the k-th corrector Cj, is 

(5.20) 

where the subscript j stands for c, f and d. Also CJ, is given by Eq. (5.15), C,Lf is 

given by Eq. (5.14) and CdLd is given by Eq. (5.16). 

For the SSC lattice, the numerical values of the quantities defined above are: at 

the energy of 20 TeV, B. is 6.6 Tesla. The dipole length Lg is 16.54 meters and 

the maximum beta PO is 332.0 meters. In our calculation we assumed ,0 = po. The 

amplitude was 5 mm. 
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/I 

L ) Correct systematic bz, b3, bq. 0.0009 i O.O( 

Systematic b2, bS, bq present. 
L I 

Table III: Summary of the results of the analytic computation of the smear in the SSC, 

Smear (%) 

No correction. 7.09 i 2.53 

bz, bs, b4 random and systematic present 

No correction. 

Random bz, bz, b4 present. 

7.07 * 2.50 

No correction. 

Systematic b2, b3, b4 present. 

0.39 * 0.00 

Correct random and systematic b,, b,, b,. 0.43 * 0.22 

Random and systematic b,, b,, b4 present. 

Correct random b,, b,, bq. 0.43 & 0.22 

Random b2, bS, b4 present. 
-- 

Correct random b2. 0.71 zt 0.25 

Random b2, b3, b4 present. 

1 

with and without correction elements. 
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The results of our computation are summarized in Table III. The value of the smear 

quoted is the average over 100 seeds and the standard deviation of the mean is quoted 

as the uncertainty in the smear. It is worth pointing out that the value of the smear 

fluctuates by a large amount depending on the seed one uses. It is important that this 

fact is taken into account in the design of a real machine. If only the mean value of the 

smear is used as a criterion for the determination of the linear aperture (apart from the 

tuneshift), the good field region may turn out not to be sufficient for safe operation. 

One should allow the smear to vary as much as say two standard deviations away from 

the mean value, within the good field region. 

The general conclusion is that the three lumped correction scheme is very effective 

in compensating for the random errors. Moreover, this particular scheme is also very 

effective in correcting for the systematic errors. This is expected, since it was initially 

developed to correct for the systematic components, and only later it was shown that 

it can be used to correct the random errors as well. 

Another observation is that the horizontal smear (in the absence of skew multipoles) 

is dominated by the sextupole component b2. The effects of b3 and bq are rather weak. 
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APPENDIX 

The horizontal motion of a beam particle is described by the Hamiltonian[12*13] 

HI = ; [P: + K&,X’] t ncl f!!& , 
where X is the horizontal displacement, P, is the canonical momentum, and K, rep- 

resents the field gradient of the normal quads. The independent variable s is the 

distance measured along some designed closed orbit. In below, the subscript z will be 

suppressed. We perform a canonical transformation into the Floquet space using the 

generation function 
112 t 2 

Gl(z,P;s) = - Px +P+- 
4th ' 

where the differentiation in p’ is with respect to S. The Hamiltonian becomes 2 
Hz = 4 Pop2 t po + n$, $$ 1 1 

L!$L zTn+l 

n+l’ 

(A.4 

(A.3) 

Here, the independent variable has been changed to B = s/R, where R is the average 

radius of the designed closed orbit. Use has been made of the relation 

2&Y-fY2 +4KPZ = 4, (A.4) 

which defines the beta-function. The horizontal displacement X is related to the trans- 

formed displacement z by 
112 

x (A.5) 

The first term of the Hamiltonian is now solved exactly by canonical transformation 

to the action-angle variables I and a, while the second term is treated as a perturbation. 

The generating function is 

&(a,~; 0) = ; POP’ cot[Q(o) + ~1 
The canonical variables are transformed to 

z = (2Z~,)1'*cos[Q(B)+~ a] , 

Pap = -(21P0)~‘* sin[Q(B) + a] , (A.7) 

where Q(e) is given by Eq. (4.8). Th e ransformed Hamiltonian is given by Eq. (4.5). t 
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